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During the 2015 State of the Union address,
President Obama unveiled plans for a $215 million
Precision Medicine Initiative. The details of this

plan were laid out by past and present directors of the
National Institutes of Health, Harold Varmus and Francis
Collins, in a commentary in the New England Journal of
Medicine.1 While the announcement stood as a public
statement of support for funding, it was likely the first
introduction the American public had to a concept that has
been close to my heart for more than a decade. In 2005,
I founded the Personal Genome Project, the world’s first
open data set of genomic and patient data. The Precision
Medicine Initiative offers many opportunities to promote the
progress of chemistry, and chemistry in its turn can do much
to satisfy the aims of the Initiative.

The term precision medicine generally refers to the person-
alization of healthcare (decisions, practices, and products) for
a given patient based on his or her unique history and genetic
makeup. Because cancer is widely recognized as a disease born
out of mutations, many of them being patient-specific, the
precision medicine stereotype emphasizes pharmacogenomics,
cancer, and especially their intersection.1 Despite this close
association, other fertile opportunities are beginning to
blossom. The number of allele-specific drugs (e.g., Ivacaftor
aimed at the 5% of cystic fibrosis patients with a specific G551D
mutation) and allele-specific treatment decisions (e.g., warfarin

dosing based on CYP2C9* type) are increasing rapidly across
many diseases. The fact that this growth is occurring despite
initial concerns over the commercial viability of such tiny
markets demonstrates the power of precision medicine and
suggests the importance of this initiative. Nevertheless, even
classic cases (like warfarin) can lose significance upon careful
examination2indicating an urgent need for more precise and
novel approaches.

Regardless of the fate of the Precision Medicine Initiative,
the broad ideas raised by the President’s proposal highlight
some exciting new areas for chemists and chemistry.

Environmental Precision. Choosing the right drug and
dose goes far beyond peering at genomic DNA
necessitating the inclusion of many environmental and
internal variables. These could include such disparate factors
as the seemingly innocuous consumption of grapefruit
(furanocoumarin affects the rate of cytochrome P450-
catalyzed drug metabolism) to past immune exposures.
Analytic chemistry can now monitor numerous chemical
differences not just from person to person but moment to
momentradically breaking with one-size-fits-all medication

and litigation-fueled fear of multiple analyses. One of the great
challenges in personalized health is monitoring and changing
what we eat and breathe. As we get better at 24/7 monitoring
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of health factors, we may extend such measurement and
regulation to include personal variation in exposure and sensi-
tivity to cholesterol, sugars (fructose and lactose), carcinogens
(UV and estrogens), microbes, viruses, allergens, toxins
(synthetic and natural), micronutrients (iron, vitamin D),
and metabolites not yet on our radar. Rather than making
food labels ever longer, more complicated, and easily ignored
by patients during impulsive buying decisions, we might instead
create personalizable cell phone apps that integrate diverse
emerging wisdom with each dynamic personal file of big data.

Resistance. Unfortunately, despite their benefits to specific
patients, drugs targeted at specific genomes, whether cancers
or infectious diseases, do not often escape the difficulties of
emerging resistance.3 These Darwinian moving targets are
particularly challenging. Here, precision should be combined
with revolutionary forms of “vaccination.” We don’t fight
drug-resistant smallpox because we eliminated it at the
source. The new precision chemistry available to add malaria
to the globally extinct list includes “gene drives.” This
powerful ability to engineer “selfish DNA” to carry payloads
making invertebrate disease vectors resistant to carrying
specific microbes must be tested with great care.4

Prevention. While it is obviously very desirable to stop
diseases before they start, there is a higher bar to developing
treatments that work on healthy individuals than on severely
affected ones. The points of intervention are typically pre-
conception, prenatal, newborn screening, and adult onset. A
huge breakthrough is occurring in noninvasive circulating blood
DNA tests for fetal, transplant crisis, or cancer cellsrapidly
growing to millions per year. Single-molecule and single-cell
measures are becoming the new standards, not just for sensi-
tivity’s sake but for the accuracy of not blurring different mea-
sures. The ability to repair tissues depends on such feedback on
diverse sets of epigenetic landscapes. Speaking of repair, by far
the most common lethal disease in wealthy regions of the world
is aging. As large, long-lived animals like the bowhead whale
survive many more cell divisions than small rodents, and
whereas some people survive a century of smoking, we suspect
that some aspects of cancer (and aging) are preventable.
Progress in finding mechanisms for youth extension and aging
reversal has taken off in invertebrates and rodents, encouraging
movement toward preclinical trials.

Costs. Bringing down the price of medicine may be one
of the great opportunities ahead. The cost and accuracy of
DNA analytic chemistry improved over a million-fold in
eight years (far faster than the analogous decline in the cost
of computing dictated by Moore’s Law) and these continue

to improve. Similar gains are being made in DNA synthetic
chemistry, including precise genome engineering. How do
we direct this momentum toward drug development costs?

Orphan drugs are quite expensive (e.g., Glybera at 1.1 million
euros per dose). Precision chemistry can reduce R&D costs
by reducing cohort sizes needed to capture a given genotype
while maintaining high efficacy and low toxicity. Gene therapy
may become one of the most precise chemical interventions
eversome genome editing occurring with fewer than one
off-target event in 300 trillion base pairs.5 If we wish systemic
delivery, then we might need 5 orders of magnitude greater
precision to avoid tumor suppressor inactivation or oncogene
activation.6 The ability to test hypotheses flowing from
the sequencing of cohorts may leverage high-throughput
testing in human organoids, which might be less costly and
more informative than animal trials.

Cohorts. As the cost and quality of measuring and altering
our personal chemistry improve radically, the ability to
interpret accurately must keep pace. This depends on cohorts
such as the Personal Genome Project, specifically consented
for open sharing7 of complex and highly identifying8 big data
on individuals (of the type that physicians need to make
decisions)not merely population-averaged case-control
DNA variant frequencies. To avoid off-target chemistry in
such tests or genome editing therapies requires whole genome
sequence of the specific patient cells, not just a generic
reference genome.9 We seek not just weak effects found in
genome-wide association studies (GWAS), but extreme values
and strongly epistatic effects which override hundreds of small
factors, and we seek rare individuals (like supercentenarians)
with personal chemistry capable of overcoming common
risk factors. To establish precise standards for new diagnostics,
the National Institute of Standards and Technology (NIST)
and the U.S. Food and Drug Administration (FDA) are
collaborating to produce sharable DNA and cells in a project
called “Genome-in-a-bottle.”10

Innovation. Just as President Obama’s State of the Union
address in 2013 lead swiftly to the Brain Research through

Advancing Innovative Neurotechnologies (BRAIN) Initiative, his
2015 address introduced a major push into precision medicine.

As the cost and quality of
measuring and altering our per-
sonal chemistry improve radically,
the ability to interpret accurately

must keep pace.
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These two projects may overlap at some points, and innovative
analytic and synthetic chemistry will be central to both.

Details of the Precision Medicine Initiative

The $215 million investment in the President’s 2016
budget includes

• $130 million for the construction of a one million
volunteer cohort with data accessible to both
researchers and patients

• $70 million to the National Cancer Institute to spur
research into drug discovery programs, looking
particularly at the genomic drivers of cancer

• $10 million to the Food and Drug Administration for
database expertise and support

• $5 million to Office of the National Coordinator to
support the exchange of data and to protect patient
privacy

Beyond these monetary commitments, the initiative more
broadly aims to use precision medicine to target cancer via
supporting novel clinical trials of targeted drugs, expanding
the use of combination therapies, and promoting research to
combat drug resistance. An important component of the
initiative involves the call to both public and private sectors
to partner and collaborate.

The cohort, or biobank, aims to synthesize data from
medical records, assays, and personal devices to provide
information ranging from genomic and proteomic, to
metabolite and environmental exposures and behavior and
make it widely available. The proposal also calls for the
engagement of patients and volunteers, going beyond
permission to participation; this includes trying to use
mobile devices to encourage healthy behaviors.

In order to support these endeavors, significant updates to
regulatory processes are required.

−Miranda Paley, Managing Editor, ACS Central Science
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